
1 


NASA TECHNICAL NOTE 

00 

cr)

0 

00 

I 

n 
z 
c 


NASA T N  D-8038 

=-I -E" 
A N  COPY: REl  e 9-r 

AFWL TECHNICAL t+ 
0-G 

3 Y"-2KIRTLAND A m ,  bi­
w3-4 
Ln- - c  
W E-;=­-

- 2  -L 


?tMATHEMATICAL EXAMINATION 
OF THE PRESS MODEL FOR 
ATMOSPHERIC TURBULENCE, 

Kenneth Sidwell 

Langley Research Center 
Hampton, V a  23665 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHlNGTON,?D,. , C. - e , ,  OCTbBER 1975 fr . 1 , 



TECH LIBRARY KAFB. NM 

- .  

1. 	 Report No. 2. Government Accession No. 

NASA TN D-8038 
4. Title and Subtitle 

A MATHEMATICAL, EXAMINATION OF THE PRESS MODEL 
FOR ATMOSPHERIC TURBULENCE 

7. 	 Author(s) 

Kenneth Sidwell 
-

9. Performing Organization Name and Address 

NASA Langley Research  Center 
Hampton, Va. 23665 I 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

3. Recipient's Catalog No. 

5. Repor t  Date 
October 1975 

6. Performing Organization Code 

0. Performing Organization Report No. 

L-10150 
10. Work Unit No. 

743-01-13-01 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Note 
14. Sponsoring Agency Code 

7. Key-Words (Suggested by Authoris) ) 1 18. Distribution Statement 
Atmospheric turbulence Unclassified - Unlimited
Random processes 

Turbulence models 

Gust design procedures 

Aircraft  design 

Subject Category 05 
. .  

9. Security Classif. (of this report) 1 20.-Security Classif. (of this page) 21. No. of Pages 22. Price' 

Unclassified Unclassified 64 $4.25 
-. .  

For sale by the National Technical Information Service, Springfield, Virginia 22161 





CONTENTS 


Page 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 


INTRODUCTION . . . . . . . .  1 


SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


FIRST ORDER DISTRIBUTIONS . . . . . . . . . .  ; . . . . . . . . . . . . . . . . .  5 

Product Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

Press Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Generalized Press Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 


SECOND AND HIGHER ORDER DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . .  12 

Product Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Press Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

Generalized Press Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 


APPLICATIONS OF PRESS PROCESS . . . . . . . . . . . . . . . . . . . . . . . . .  19 

The Quasi-Steady Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

Transition Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 


APPLICATIONS TO ATMOSPHERIC TURBULENCE PROBLEMS . . . . . . . . . . . .  32 

Measured Atmospheric Turbulence Data . . . . . . . . . . . . . . . . . . . . . . .  32 

Effect of Intensity Distribution Upon Calculated Ekceedances . . . . . . . . . . . .35 


CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 


APPENDIX A - DEVELOPMENT OF C PROCESS . . . . . . . . . . . . . . . . . .  42 


APPENDIX B - DEVELOPMENT OF GENERALIZED PRESS PROCESS . . . . . . .  45 


APPENDIX C - COMPARISON OF THE PRODUCT AND OSCILLATORY RANDOM 

PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 


REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 


FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 


iii 


... 



A MATHEMATICAL EXAMINATION OF THE PRESS MODEL 

FOR ATMOSPHERIC TURBULENCE 

Kenneth Sidwe11* 
Langley Research Center 

SUMMARY 

The random process  used to model atmospheric turbulence in a i rcraf t  response 
problems is examined on a mathematical basis. The first, second, and higher order  
probability density and characterist ic functions are developed. The concepts of the 
Press model lead to  an approximate procedure for  the analysis of the response of lin­
ear dynamic systems to a class of non-Gaussian random processes.  The Press model 
accounts for  both the Gaussian and non-Gaussian forms of measured turbulence data. 
The nonstationary aspects of measured data a r e  explicitly described by the transition 
properties of the random process.  The effects of the distribution of the intensity pro­
cess  upon calculated exceedances are examined. It i s  concluded that the P r e s s  model 
with a Gaussian intensity distribution gives a conservative prediction of limit load values. 

INTRODUCTION 

The random process  developed by Press and his associates at NASA (refs. 1 to 3) 
i s  used to  model the random nature of atmospheric turbulence in many aeronautical appli­
cations. The process i s  an application of random process  theory to the problems of a i r ­
craft response to atmospheric turbulence. It was developed to  account for  the exceed­
ance properties of atmospheric tubulence indicated by data f rom VGH recorders  on many 
aircraft .  The turbulence was  considered to  consist of a s e r i e s  of local regions o r  
"patches," each having a stationary Gaussian distribution of turbulence velocity compo­
nents with a fixed intensity o r  standard deviation. The intensity was then varied by a 
separate random process  in order  to account for the apparent nonstationary and non-
Gaussian structure of the atmospheric turbulence. A schematic example of the pattern 
of locally Gaussian regions with intensity variations between the regions is shown in 
figure 1. 

The probabilistic s t ructure  of the resulting random process  was f i r s t  examined by 
Bullen. (See refs. 4 and 5.) Other studies of the random process  are the reports  by 
Dutton and Thompson (ref. 6)  and by Reeves (ref. 7). The application of the process t o  

*This  research  was accomplished while the author held a National Research Coun­
cil Postdoctoral Resident Research Associateship at NASA Langley Research Center. 



atmospheric turbulence data has also been examined by Coupry (refs. 8 and 9) who refer­
red  to  the development as the Press process,  a terminology which is followed in the 
present report. The associated exponential type of exceedance expression for  the aver ­
age rate of exceeding a level of a i rcraf t  response has been the basis for  the evaluation of 
an  extensive amount of experimental data. Some of this work has been discussed in ref­
erences 10 to  13. Several studies have developed the associated analytical techniques 
(the "power spectral  density method") for application in a i rcraf t  strength design. (See 
refs. 14 to 16.) These procedures are included in some versions of aircraft strength 
criteria. (See refs. 17 and 18.) 

The present study examines the mathematical basis of the Press process  and exam­
ines several  applications both to  the measurement of atmospheric turbulence and t o  the 
associated problems of a i rc raf t  response. The pr imary  conclusion is that the basic con­
cepts of the Press process,  which were originally developed largely on an intuitive basis,  
can be expressed with an  explicit mathematical model. The study is divided into two 
par ts .  The f i r s t  par t  i s  a general  mathematical formulation of the Press process.  Ini­
tially, the first order  distributions of the process  are developed, that is ,  distributions of 
an ensemble at a single t ime point. Then the second and higher order distributions are 
developed; this development leads to  a discussion of the dynamics of the random process.  

The second par t  of the study considers several  applications of the Press process.  
Two specific mathematical problems are discussed, F i r s t ,  the validity of currently used 
analytical procedures as a method for the analysis of dynamic system response to  a class 
of non-Gaussian random processes  i s  discussed. Second, the ability of the Press process  
to  account for  the nonstationary behavior of atmospheric turbulence is discussed. It is 
also shown that the transition properties of the Press process  explicitly account for  both 
the Gaussian and non-Gaussian forms  of experimental data. The use of the Press pro­
cess as a specific model for  atmospheric turbulence in aeronautical applications is then 
discussed. The effects of the choice of the intensity process  upon both measured and 
calculated exceedance data are considered. 

SYMBOLS 


A standard deviation of R process  

b standard deviation of S process  

bi intensity parameter  

C( ) characterist ic function of subscripted process  
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det determinant of a matrix 


{dR( )) spectral  process  associated with R process  


E[ 1 ensemble average 


F( ) spectral  distribution function of subscripted process  


H covariance matrix of vector R process  


Hij elements of covariance matrix of vector R process  


h(7) impulsive response function of a l inear system 


i unit of imaginaries, 6 i  


inv inverse of a matrix 


Kn( ) modified Bessel functi.on of order  n (ref. 22) 


M4 flatness factor (ratio of fourth moment to  square of second moment) 


m dimension of vector process 


N( ) expected ra te  of positive slope crossings of indicated level 


NO expected ra te  of positive slope zero  crossings, 	 1 Ai­
2~ A r  

n index of generalized Press process  (=1/2, 1, 3/2, . . .) 


Pi probability parameter  


P( ) probability density function of subscripted process  


PC(ZIS) conditional probability density function of z process  conditional on value s 


r ,R  random process  
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XO 

P 

r( ) 

6ij 

random process  ("intensity") 


t ime interval 


t ime 


turbulence or  gust intensity parameter  


quasi -steady random process  (Press or  generalized Press) 


mean value of x 


generalized Press random process  


product or Press random process  


Ab0 


gamma function (ref. 22) 


Kronecker 6 -symbol 


Fourier t ransform variable for characterist ic functions 

correlation coefficient, correlation function, or  autocorrelation function 

random process  

t ime -difference variable 

power spectral  density function of subscripted process,  -00 5 w 5 00 

autocovariance function of subscripted process  

frequency, Fourier transform variable of r 
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0 time average 

Superscript : 

P integer index 

Subscripts: 

C conditional 

d derivative 

i integer index 

in input random process  

j integer index 

2 limit 

out output random process  

tr transition 

A bar over a symbol denotes a vector. Dots over symbols denote derivatives with 
respect to time. P r imes  denote derivatives with respect to  the argument. A tilde over 
a symbol denotes a variable of integration. 

FIRST ORDER DISTRIBUTIONS 

The formulation of the P r e s s  process  is  developed in the present section. The 
development extends some previous work which has been done on the mathematical form­
ulation of the Press process  in references 4 and 6.  The basis of the present development 
is the interpretation of the Press process  as the product of two independent random pro­
cesses,  a concept f i r s t  stated by Reeves (ref. 7). 

The discussion is restr ic ted to  first order  distributions; that is, the process  i s  
considered at a single t ime point only. Thus, the treatment of the t ime evolution of the 
random process  is not considered in this section. The development follows standard 
analytical techniques of probability theory; appropriate references are the texts by 
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Papoulis (ref. 19) and by Lin (ref. 20). Al l  the indicated statist ical  moments are assumed 
to  exist. All the random processes  are specified to have ze ro  mean values. 

Product Process  

The random process  i s  defined by the product of two component processes,  

'The two component processes ,  R and S, are specified to be statistically independent. 

The probability functions of the product process  Z are completely determined by 
the functions of the two component processes.  The joint probability density function of 
the product process  and one of i ts  components i s  determined by the product relation 
(eq. (1))and the independence of the two component processes  

The probability density function of the product process  itself i s  obtained from the joint 
density function by using the consistency relation, which determines the marginal distri  ­
bution from the joint probability density function 

The R component process  can be related t o  a n  associated conditional probability 
density function. By using the definition of conditional probability and the form of the 
joint probability density function (eq. (2)), 

Pc(ZJ4 = -1 P & - = z/s) (4)Is1 

The probability density function of t h  product proce can be writte i t e rms  of the 
conditional probability density function as 
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The probability density function of the product process  can be developed from 
either equation (3) o r  equation (5), depending upon whether the R component process  is  
specified either directly o r  indirectly by the associated conditional process.  The his ­
torical  approach (ref. 1)used the idea of the conditional probability and developed equa­
tion (4) through the specific form assumed for  the conditional process.  The interpreta­
tion of the resulting random process  as a product process was introduced by Reeves 
(ref. 7). The product relation (eq. (1))is particularly useful in the subsequent develop­
ment since it leads directly to  some of the important properties of the Press process  and 
its extensions. 

The product process  can also be developed in t e rms  of i ts  characterist ic function 

nm 

Cz(6) = j- eiBZp,(z) dz 
-03 


The characterist ic function i s  developed from equation (3) by using the properties of the 
associated Fourier transformations (ref. 21) 

The formulation of the product process  in t e r m s  of characterist ic functions i s  conveni­
ent since it usually leads to  s impler  functional relations. 

The statist ical  moments of the product process  can be developed from those of the 
component processes;  either from both the probability density and the characterist ic 
functions o r  directly f rom the product relation and the independence of the component 
processes 

The preceding development considers the product process  in general  t e rms .  The 
subsequent development is restr ic ted to the specific forms of the two component pro­
cesses  which are useful in applications as a model for  atmospheric turbulence. 

Press Process  

The original development (ref. 1)of the Press random process  specified the R 
process  to  be Gaussian under the locally Gaussian condition. All the present  develop­
ment is restricted to  this  case. The reason fo r  this choice is discussed later in the 
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section on the quasi -steady approximation. Several distributions were considered for  
the S process  in reference 1. A Gaussian distribution was selected, 'based on the cor ­
respondence between the resulting exponential exceedance expression and measured 
atmospheric turbulence data. Almost all the subsequent applications of the Press model 
have been based upon the S component being a Gaussian random process.  This par t ic­
ular case i s  re fer red  t o  as the Press process.  

Scalar-scalar.- The Press process  in scalar form is  generated by the product of 
two scalar Gaussian independent component processes,  R and S. 

The statist ical  moments of the Press process  can be determined directly from the 
product relation and the independence of the R and S process .  

E[d(t l j ]  = 0 

. ( Q - 1 ) 1  2A bQ P  


J 

The probability density functions of the component processes  have the Gaussian functional 
form: 

This notation is fairly standard in the aeronautical l i terature,  except that the S compo­
nent process  i s  usually res t r ic ted to  nonnegative values. However, the S process  must 
be defined with both positive and negative values in order  t o  avoid some mathematical 
problems in the subsequent formulation. This approach does not lead to any incompati­
bility with the traditional approach to  the Press model. The possible restriction t o  non­
negative values is based upon the historical development of the Press process  through 
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the concept of a conditional process,  using equations (4) and (ll),where the conditional 
standard deviation i s  the product of the standard deviation of the R process  and the 
modulus of the value of the S process.  In order  to satisfy this interpretation, a sepa­
rate random process  termed C ,  which is restr ic ted to nonnegative values, is defined. 
The value of the C process  is the modulus of the value of the S process.  The rela­
tions between these two processes  are developed in appendix A. 

The probability density function of the Press process  i s  determined by equation (3) 
and by the functions of the two component processes  

This relation was first derived by Bullen (ref. 4). The indicated function is a modified 
Bessel function of the second kind and zero  order.  (See ref. 22.) The corresponding 
characterist ic function i s  obtained either f rom the component processes  by using equa­
tion (7)or  from the Fourier transformation of the probability density function (eq. (12)). 

-1/2 
C,(e) = (A2b202 + 1) (13) 

By using the asymptotic expansion for the modified Bessel function, the probability 
density function of the Press process  has basically an  exponential form fo r  large values 
of the argument 

The strongly non-Gaussian nature of the Press process  i s  evident from the 
exponential -type dependence of the probability density function in its extremes. Another 
measure of the Gaussian character is the flatness factor, the ratio of the fourth moment 
to  the square of the second moment. 

The moments are given by equations (10). The flatness factor has a value of nine for the 
Press process  in contrast to the value of three for the Gaussian process.  Thus, the f i r s t  
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order  probability density function and the flatness factor both indicate the strongly non-
Gaussian nature of the Press process.  

Vector-scalar. - The development is easily extended to a vector random process.  
However, the vector process  can be defined in several  ways, depending upon whether the 
R process  or  the S process  o r  both are considered to  be vector processes.  The p r e s ­
ent development is guided by previous applications of the Press process  in the aeronauti­
cal l i terature,  which consider the vector nature of the process  to  be due solely to the R 
process  

Thus, the vector process  Z is formed by the product of a vector process  R, whose 
components correspond to  those of the Z process,  and a scalar process  S. The dis t r i ­
bution of the R process  is  specified to be jointly Gaussian with appropriate covariance 
matrix 

The joint probability density and characterist ic functions are developed from equations (3) 
and (7),with appropriate modifications for  the vector nature of the R process.  The 
probability density function of the vector -scalar Press process  is 

1-m 

The joint characterist ic function is derived from the joint characterist ic function of the 
R process  by using the vector form of equation (7) 

The quantity m is the dimension of the vector R and Z processes .  
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The various moments of the vector Press process  can be obtained from the 
moments of the component processes  by using the product relation and the independence 
of the R and S processes.  

The joint probability density function of the Press process  determines the proba­
bility density function of various combinations of the vector components, F o r  an  exam­
ple, the sum of two components of a vector process  is 

The random process  Rsum is Gaussian since it is the sum of two Gaussian processes.  
Thus, the random process  Zsum is a Press process  since it i s  the product of two inde­
pendent Gaussian random processes.  Therefore, the probability density of the sum i s  
that of a sca la r  Press process  with appropriate variance, determined from equation (20). 
This example shows that a l inear combination of Press processes,  all having the same 
sca la r  S process,  i s  itself a Press process.  

The vector Press process  described i s  defined with a sca la r  S process.  In this 
case the resulting components of the Press process are never independent. This prop­
er ty  follows either fbrom the probability density function, from the characterist ic function, 
o r  directly from the product relation (eq. (16)). 

Vector-vector.- A vector Press process  can be defined in another manner as the 
product of a vector R and a vector S process:  

In this case the probability density and characterist ic functions are not those of equa­
tions (18) and (19). Also, in this case the components of the vector process  can be 
inder ?ndent. 

Generalized Press Process  

Distributions of the S process,  other than the Gaussian, have been considered 
both n the original development (ref. 1) and in several  other reports.  An extensive list 
of possible S component processes  and the resulting product processes  has been com­
piled by Houbolt (ref. 23). In the present section the choice of the S process  is gen­
eralized by consideration of a family of processes  related to the Pearson type III family. 
This idea was originally suggested by Bullen (ref. 5), by Houbolt (ref. 23), and by 
Dutton and Thompson (ref. 6) .  
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The S process  is  specified to be a member of a family of random processes  
related t o  the Pearson type III family 

The Gaussian R component process  is not changed. The resulting family of random 
processes  is called a generalized Press process  o r  simply a generalized process  of 
index n. The family includes the special cases  of the Gaussian .(n = 1/2) and Rayleigh 
(n = 1)distributions of the S component process.  Thus, the Press process  discussed 
in the previous section i s  a generalized process  of index one-half. 

The probabilistic s t ructure  of the generalized process  is determined from the rela­
tions for the R and S component process.  The specific relations for  the moments 
and for  both the probability density and characterist ic functions are developed in 
appendix B. 

SECOND AND HIGHER ORDER DISTRIBUTIONS 

The t ime evolution of the Press process  is considered in the present section. The 
appropriate properties are defined by the higher order  distributions: the joint probabil­
ity of the random process  considered at several  t ime points. The second order  distribu­
tions are most important since these are required f o r  consideration qf the derivative and 
the exceedance expression of the random process.  Also, the second order  distributions 
are related to the covariance and power spectral  density functions. Both the R and S 
processes  are specified to be stationary and to  have zero mean values. All indicated 
derivatives of the random processes  and all indicated statist ical  moments are assumed 
to  exist. 

Product Process  

The product process  i s  developed from the product of two independent scalar ran­
dom processes.  

z(t) = r ( t )  s(t) (23) 

The autocovariance function i s  the joint moment of the random process  a t  two time 
points 
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By using the product relation, the autocovariance of the product process  is determined by 
the autocovariance functions of the R and S processes  

Since the three random processes  are stationary, their  autocovariance functions depend 
only upon the difference of the values of the two time points considered. 

The derivative of the product process  i s  directly related to the derivatives of the 
component processes  ' 

i ( t )  = ?(t)s(t)+ r(t) k(t)  (26) 

The autocovariance function of the derivative of the product process  can be developed 
either f rom equation (25) or from equation (26) as 

Thus, the autocovariance function of the derivative of the product process  cannot be 
directly related t o  those of the derivatives of the two component processes  alone; there  
i s  a mixed te rm not identified with the derivatives of either component process.  This 
t e r m  vanishes in the special case of the variance of the derivative, 

E[k2(t)l = *;(O) = E[ir2(t)l E[s2(t)l + E[r2(tj] E[k2(t)l 

The autocovariance functions of higher order  derivatives can be developed in a s imilar  
manner. 

The relationship between the product and component processes  can be developed in 
t e r m s  of their  power spectral  density functions. The three processes  are assumed to be 
mean square continuous; thus, they can be expressed in a Fourier  o r  spectral  expansion. 
The associated power spectral  density function is related t o  the autocovariance function 
by the Fourier transformation relations 
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Corresponding relations can be written for  the R and S processes ,  with appropriate 
changes in the notation. 

The power spectral  density function of the product process  is determined by the 
corresponding functions of the component processes.  The product relation between the 
autocovariance functions (eq. (25)) transforms into a convolution relation between the 
power spectral  density functions 

The relations between the autocorrelation and power spectral  density functions have been 
given previously in reference 24. 

The probability density functions of the product process  are determined from the 
corresponding functions of the component processes .  The second order  probability den­
si ty  functions are considered, that is, the relations for  the processes  considered at two 
time points. The joint second order  probability density function of the product process  
and one of its components is determined by the product relation (eq. (23)) and the inde­
pendence of the two component processes  as 

The second order  probability density function of the product process  is obtained from 
the joint density function as 

The corresponding second order  characterist ic function is obtained from the probability 
density function by using the properties of the associated Fourier  transformations 

The preceding three relations are s imilar  to  the corresponding f i r s t  o rder  relations 
(eqs. (2), (3), and (7)). The formulation can be extended to  higher order  distributions. 

It is sometimes useful to  interpret  the formulation in t e r m s  of the associated con­
ditional process.  The appropriate relations are developed either f rom equation (31) or 
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f rom equation (33) by using the definition of the conditional probability density function 

The preceding development considers the product process  in general  terms.  The 
subsequent development is restr ic ted to specific forms  of the two component processes.  

Press Process  

The Press process  is a special case of the product process;  both components, R 
and S ,  are specified to  be stationary Gaussian processes.  The scalar form of the Press 
process  is considered f i rs t .  The two scalar component processes  are completely speci­
fied by their  covariance functions and zero mean values. The second and higher order  
distributions of the Press process  are completely determined by the covariance functions 
of the components. The covariance functions can be expressed in t e rms  of the autocor­
relation functions and the variances as 

The relation between the autocorrelation functions follows from the relation between the 
autocovariance functions (eq. (25)). 

Similar relations can be written for the f i r s t  derivative of the random processes  by 
using equation (27). The autocorrelation functions of the derivatives are determined f rom 
the autocorrelation functions of the random processes  as 
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The second order  Gaussian probability density and characterist ic functions of the 
two component processes  are 

J 

Similar relations can be written for  the S process  with appropriate changes in notation 
as indicated by equation (36). 

The second order  probability density and characterist ic functions of the Press p ro ­
cess are obtained from the product relations (eqs. (31)t o  (35))and the functional relations 
for  the R and S component processes.  However, in the subsequent analysis it is s im­
pler  to  work with the characterist ic functions. The second order  characteristic function 
of the Press process  is obtained by using equation (33) 

(i = 1, 2)I 
The characterist ic function must be inverted in both transform variables to give the sec­
ond order  probability density function of the Press process .  This inversion appears to 
be intractable. However, some of the important properties of the process can be 
obtained from the characterist ic function. The second order  characterist ic function 
defines the corresponding moments of the Press process,  although these are more easily 
obtained directly from the product relation. It is noted that the joint characterist ic func­
tion depends only upon the difference of the values of the two t ime points, which is a con­
sequence of the stationarity of the process.  

The second order  characterist ic function can be used to  determine several  proper  -
ties of the derivative of the Press process.  The appropriate relations are given by 
Moyal (ref. 25). The characteristic function of the derivative is obtained directly f rom 
the second order  characterist ic function 
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The characteristic function of the derivative is separated into two factors.  Each factor 
i s  the characterist ic function of a Press process  by equation (13) and is dependent upon 
the derivative of only one of the component processes.  By equation (26) the derivative i s  
the sum of two processes,  each of which is the product of two independent Gaussian pro­
cesses. Thus, the derivative process  is the sum of two independent,Press processes,  
which i s  the statement of equations (42). 

The joint characterist ic function of the Press process  and its first derivative is 
used to examine the independence of the random process  and its derivative and to deter­
mine the exceedance expression. The joint characterist ic function is determined from 
the second order function as 

Since the joint characterist ic function does not separate into a product of two separate 
functions of the individual Fourier t ransform variables, the random process  and its first 
derivative are not independent, although they are uncorrelated since the process  is 
stationary. 

The joint probability density function of the random process  and its f i r s t  derivative 
is obtained by inversion of the joint characteristic function in both variables. The joint 
density function is used to determine the expected rate of exceedances of a given value of 
the process,  often re fer red  t o  as the exceedance expression (ref. 26), 

m 

N(z) = 1 2 pzh(z,k) di (44)
0 

Evaluation of both the joint probability density function and the exceedance expression 
from the joint characterist ic function appears t o  be intractable. 
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The higher order distributions of the sca la r  random process  are developed in a 
s imilar  manner. Since both the R and S processes  are Gaussian, their  higher order  
probability density and characterist ic functions are determined by the matr ices  of the 
autocovariance functions 

E[r(ti) r(tj)] = A2 pr(ti ­

‘j’l (45) 

The matrix of the autocovariance function of the S process  is defined by s imilar  nota­
tion. The higher order  characterist ic functions of the Press process  are determined by 
the same procedure as that used for  the second order  function (eqs. (41)). The appro­
priate relations are expressed in the forms  for the higher order  distribution of the sca­
lar processes:  the basic characterist ic function relation (eq. (33)), the characterist ic 
function of the R process,  and the probability density function of the S process.  The 
higher order  characterist ic functions of the Press process  are then obtained by integrat­
ing all the elements of the S process  in the relation corresponding to equation (33) 

7 

Cz@) = [det (mij + 6ij)]-1’2 1 
I 

Q=1 J 
The scalar Press process  is formally identical to  a vector Press process  at a sin­

gle t ime point if the time evolution of the S component is suppressed. The higher order  
characterist ic function of a scalar Press process  (eqs. (46))can be reduced to the first 
order  characterist ic function of a vector Press process  (eq. (19)). This relationship is 
shown by giving a unit value t o  all elements of ps and by interpreting the values of the 
sca la r  R process  at given t ime points as the components of a vector R process  at a 
single t ime point. This relationship can be extended to  develop the higher order  charac­
ter is t ic  functions of a vector process.  These functions are obtained from equations (46) 
by replacing the variances and correlation matr ices  with the appropriate covariance 
matr ices  of the vector R and of the scalar o r  vector S component processes.  
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Generalized Press Process  

The generalized Press process  is formed by the product of the Gaussian R pro­
cess  with a S process  which is a member of a family of processes  related to the 
Pearson type III family. The f i r s t  order  probability density functions of the S process  
family are given by equation (22). The second order  functions of the generalized process  
are determined directly from the second order  functions of the two component processes  
and the appropriate product relations (eqs. (32) o r  (33)). However, the higher order  func­
tions are more easily obtained in a different manner by using the relation between the 
generalized processes  of various indices, that is, the generalized process  of index 2n 
is the sum of n independent and identically distributed Press processes .  This  relation 
(eq. (B9))determines the higher order  functions of the generalized process  f rom those of 
the Press process  itself. This approach is discussed further in appendix B. 

In summary, the probabilistic functions of the Press and the generalized Press pro­
cesses  are developed by using the representation of the Press process  as the product of 
two independent random processes.  The probabilistic s t ructure  of the Press process  i s  
completely determined from the given properties of the component processes.  The char ­
acter is t ic  functions of a rb i t ra ry  order  can be developed for both the sca la r  and vector 
Press processes by introducing the appropriate notation in equations (46). 

APPLICATIONS OF PRESS PROCESS 

The mathematical properties of the Press process  are developed in the previous 
sections. The present section examines the relationship between the mathematical prop ­
er t ies  and the intuitive concepts of the P r e s s  process  as originally developed and as 
applied both to  atmospheric turbulence measurement problems and to associated aircraf t  
response problems. The intent of the present section i s  to  show how the intuitive con­
cepts are related to  and largely justified by the mathematical development. Two general  
topics are considered. The first topic is the development of the approximate form of the 
random process  which i s  used for the analysis of the dynamic response of l inear systems. 
This approximation is based upon the concept of the S process  being slowly varying so  
that it affects system response only in a static manner. This concept is  termed the quasi 
steady approximation. The second topic i s  the transition properties of the Press process  
and their  relation t o  the stationarity and the Gaussian character of data modeled by the 
Press process.  

The Quasi-Steady Approximation 

The quasi-steady approximation of the Press process  is discussed in the present 
section. The quasi-steady form of the process  is developed from the exact random pro-

-
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cess. The validity of the quasi-steady approximation as a method for  the analysis of 
dynamic system response to a class of non-Gaussian random processes  is discussed. 

The t ime variation of the Press process  requires consideration of the t ime var ia­
tions of both the R and the S processes.  The dynamics of the exact Press process  
are influenced by the dynamics of both component processes.  However, the historical 
development (refs.  1 and 3) introduced a .different concept which is an approximation of 
the exact process  dynamics. This concept i s  based on the turbulence patch idea; the tur­
bulence field consists of patches where the random turbulence velocity component (Z) 
varies  with negligible change of the random intensity o r  magnitude (related t o  S). This 
concept introduces the idea of two t ime scales. On a local t ime scale the Gaussian R 
process  var ies  at a constant value of the S process.  On a global t ime scale the S 
process  varies, and introduces the non-Gaussian nature of the product process.  This 
concept i s  called the quasi -steady approximation. The corresponding random process  i s  
called the quasi-steady Press process  or simply the quasi-steady process.  

The development and the limitations of the quasi -steady approximation are shown 
explicitly by the consideration of the response of a l inear dynamic system. The system 
response or  output i s  the convolution of the impulsive response of the system and the sys­
tem input (refs. 19 and 20). 

The input Press process  i s  the product of two independent component processes  (eq. (23)) 
s o  that equation (47)can be written as 

It is assumed that the impulsive response of the system is essentially res t r ic ted to some 
time period T. In other words if the impulsive response is set to zero  after a time 
period T, the change in the system response calculated by equation (47)i s  negligible. 
With this restriction the integration in equation (48) can be limited t o  the system response 
t ime period. 
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At this  point the quasi-steady concept is introduced; the S component process  is essen­
tially constant over the system response t ime period T. With this assumption the S 
component can be removed from the integration since it is independent of the integration 
variable. 

The integration now involves only the R component process.  The integral is identified 
as the response of the system to the R component process.  

Since the input R component process  i s  Gaussian, then the output R component pro­
cess also i s  since it i s  a l inear combination of Gaussian random variables. The system 
response i s  the product of two independent component processes  and combines equa­
tions (50) and (51) 

Thus, the probabilistic s t ructure  of the system output is completely determined within the 
accuracy of the quasi-steady approximation. Further,  the system output and input have 
the same probabilistic s t ructure  since they are the product of a Gaussian R process  and 
the same S process.  

The development of the system response (eq. (52)) shows the structure and assump­
tions of the quasi-steady process.  The R component process  i s  always specified to  be 
Gaussian. There i s  no restriction on the distribution of the S component process  since 
this  component is not affected by the system response. It is noted that this pattern of the 
restrictions on the two-component process  i s  precisely the pattern used in the original 
development. (See refs. 1 and 3.) The t ime variation of the S component process  is 
assumed to be much slower than all significant aspects  of the system response. In appli­
cations t o  atmospheric turbulence problems, the R component process  i s  a lso assumed 
to  vary on a much smaller  t ime scale than the S component. This i s  the "locally 
Gaussian" condition. The development of equation (52) shows that this assumption is 
actually not necessary. However, this assumption is followed in the subsequent develop ­
ment, since the case of a rapidly varying R component is of pr imary importance in 
dynamic response analysis. 
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The quasi-steady approximation presents  a method of analysis of the response of 
dynamic systems to one class of strongly non-Gaussian processes.  In applications the 
input R component process  is defined t o  have unit variance; that is, 

E[.%(t)l = 1 (53) 

This definition establishes a n  a rb i t ra ry  scale factor between the two component processes .  
The system response is determined by the response R component process.  For l inear 
systems, the response is completely specified in a probabilistic sense by the covariance 
function of the Gaussian R component and the variance of the S component process.  

The probabilistic relations for  the quasi -steady process  are obtained from those 
for  the exact Press process.  Either of two analytical procedures can be used. In the 
first procedure the relations for the quasi-steady process  are obtained by developing the 
dynamics of the Gaussian R process,  and then introducing the quasi-steady S process  
by means of consistency relation. This method i s  the standard approach used in the 
development and application of the Press process  in the aeronautical literature. This 
procedure i s  the same as that for developing the f i r s t  o rder  relations of a vector Press 
process  formed by the product of a vector R and a scalar S component (eqs. (18) 
and (19)). In the second procedure the relations for  the quasi-steady process  are obtained 
directly from the corresponding relations for  the exact process  by setting the local var i ­
ation of the S process  to  zero. The second method explicitly shows the development of 
the quasi-steady approximation. 

An example of the quasi-steady approximation is the development of the derivative 
of the product process  (eq. (26)) 

i(t) = E(t )  s(t)+ r(t) b(t) 

The pelative contributions of the two component processes  to  the variance of the deriva­
tive are expressed in t e r m s  of the derivatives of the two autocorrelation functions. 

E[k2(t)l = A2b2[-p;1(0) - p:(O)l (54) 

Under the quasi-steady approximation, the t ime variation of the S process  is negligible 
in comparison with that of the R process. The autocorrelation function of the S com­
ponent is constant on a local t ime scale. The variance of the derivative of the quasi-
steady process  is 
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(The notation of the Z and X processes  i s  used to distinguish the exact and quasi-
steady processes,  respectively.) 

Similarly, the characterist ic function of the derivative of the quasi-steady process  
i s  developed from that of the exact Press process  given by equations (42) 

-1/2 
ck(0) = [l - A2 2 2  p;1(0)1 [l - A b 8b 8 2 2 2  p'$(O)l 

-1/2 

Ck(8) = [l - A2 2 2  pY(0)l -1/2b 8 

Thus, the derivative of the exact process  i s  the sum of two independent Press processes.  
The derivative of the quasi-steady process  is itself a Press process.  This relation is 
equivalent t o  obtaining the derivative of the quasi-steady process  from the product rela­
tion by omitting the derivative of the S component 

k(t) = E(t)  s(t) (57) 

One important application of the quasi-steady concept is the development of the 
associated exceedance expression, which is the expected rate of crossings of a given level 
of a random process.  The exceedance expression is obtained from the joint probability 
density of the random process  and its first derivative (ref. 26) 

An alternate approach i s  t o  use the exceedance expression of the R process  which is 
Gaussian. The exceedance expression of the total process  i s  obtained by using the con­
sistency relation to eliminate the S process 

The exceedance expression for  the quasi-steady Press process  is determined by either 
of these approaches. Historically, the development of the exceedance expression has 
followed equation (59) 

N(x) = No exp ( !2) 
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The exceedance expression for  the quasi-steady generalized Press process  of index n 
is obtained in a s imi la r  manner since only the distribution of the S process  is changed 

The quasi-steady process  is an approximate form of the exact Press process.  The 
t ime variation of the S component process  is assumed to  be much slower than both the 
R component process  and all significant aspects of the dynamic response of a system. 
The quasi-steady assumption is an approximate method for  the analysis of the response 
of linear dynamic system to a class of strongly non-Gaussian random processes.  

Transition Propert ies  

The transition properties of the Press process  are examined in the present section. 
By using the transition properties, the relation between the properties of the Press pro­
cess and the properties of stationarity and Gaussianness is also examined. 

Measured exceedance data for  atmospheric turbulence velocity components show a 
dual nature, that is, both Gaussian and exponential-type distributions. The Gaussian dis ­
tribution appears in some of the direct  measurements of atmospheric turbulence, gener -
ally those related t o  short  periods of turbulence. The exponential-type distribution also 
appears in some of the direct turbulence measurements and is particularly valid for  
airplane VGH data measured over a long period of time. (See refs. 12 and 27.) A dis­
cussion of the existence of both types of data i s  given in reference 28. 

The original development of the Press process  (ref. 1) attempted to  account for this 
dual nature by introducing the turbulence patch concept. Thus, data measured within one 
patch are Gaussian; data measured over a large number of patches have an exponential-
type distribution. The transition between the two distributions i s  interpreted as an indi­
cation of nonstationarity. 

The questions of the stationarity and the Gaussian character of the Press process  
are formally answered by the functional form of the probability density functions; the 
Press process  i s  stationary and non-Gaussian. The formal definition of these propert ies  
does not answer the questions regarding experimental data. However, these questions 
can be restated in a more specific form. Firs t ,  how can the Press process,  which i s  
stationary, account for  data which appear to be nonstationary? Second, how can the 
Press process,  which is non-Gaussian, account for data which appear to  be Gaussian? 
The answers t o  both of these questions are contained in the concept of the product of two 
independent random processes,  which evolve on radically different t ime scales. 



The transition effects of a random process  are described by a transition probability 
density function, the probability density function of a random process  conditional on its 
value at an earlier t ime point. Any measurement of a random function implicitly involves 
consideration of a transition probability density function which determines the transition 
of the process  f rom a given initial state to a random final state. In other words, a set 
of measured data, s tar ted at some point in time, must forget its initial value to  some 
extent. With the usual type of random process  the transition effects are eliminated by 
measuring data over a t ime period which is many t imes grea te r  than the t ime scale of 
the random process.  With the Press process  this  operation is complicated by the p re s ­
ence of two independent random processes  that have radically different t ime scales. 
Thus, the transition process  occurs in two s teps  and is indicated schematically by the 
following notation: 

The first transition involves the loss  of the initial value of the R process.  For  the 
case of atmospheric turbulence, the t ime scale of this  p rocess  is usually on the order  of 
a few seconds, which i s  usually much less than the measurement period. Thus, this 
transition is of secondary importance in most applications; it is omitted in the subsequent 
discussion. The second transition, involving the loss of the initial value of the S pro­
cess, may involve a time scale on the order  of the measurement period. This transition 
may strongly influence the properties of the measured data. 

The important measured quantity is the conditional o r  transitional probability den­
si ty  function of the random process  at t ime t ~ ,given the value of the S process  at an 
ear l ie r  t ime ti. This function is determined from the consistency relation and the defi­
nition of conditional probability as 

-m J 
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The second relation follows from a special functional property of the conditional 
probability density function 

This relationship is proven by using the propert ies  of the associated Characteristic 
function 

The f i r s t  equality is the consistency relation for  the characterist ic function which obtains 
the marginal function from the second order  characterist ic function. The second equality, 
which i s  a functional property (eq. (35)) of the second order  conditional characterist ic 
function, shows that the indicated characterist ic function is independent of s(t1). 

The relation (eq. (63)) does not imply an independence property between the product 
process  Z and the S component process.  

The two probability density functions under the integral sign in equations (62) are 
both Gaussian for the Press process.  The indicated integration cannot be performed 
directly but requires a series expansion and integration t e r m  by term.  

The convergence of the s e r i e s  follows from comparison with the multiplication theorem 
of Bessel functions (ref. 22). The se r i e s  converges for all finite values of the param­
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eter X. Accordingly, the series converges for  all values of the modulus of &(T) less 
than one. 

The transitional probability density function (eq. (65)) defines the transition of the 
Press process  from the initial random state t o  the final random state. The initial and 
final states are determined by considering the limiting values of pS(7) as the t ime dif ­
ference becomes zero and infinity, respectively, 

Equation (66) follows from the integral expression (eqs. (62)). The development requires  
consideration of the Dirac delta functional form of the transition probability density func­
tion of the S process  in the limit of small  t ime differences. Equation (66) does not fol­
low from the se r i e s  expression (eq. (65)), since that s e r i e s  i s  not uniformly convergent. 
Equation (67) follows either from the integral expression o r  from the se r i e s  expression. 

The transition probability density function is Gaussian only in the limit of zero  
t ime difference; the Press process  itself is non-Gaussian. Also, the transition probabil­
ity density function depends only upon the t ime difference. This property i s  a direct  con­
sequence of the stationarity of the Press process,  although the transition itself is  
nonstationary. 

The transition properties of the Press process  can be developed in te rms  of an 
associated transition random process.  This process  is defined by the transition proba­
bility density function (eqs. (62)). Comparison of equations (62) and (5) shows that the 
transitional process  i s  the product of two independent random processes,  the fully devel­
oped R process  and the transitonal S process  

The transitional S component process  is defined by the probability density function of 
s(t2) conditional on the value of s(t1). It is Gaussian with known mean and variance, 
both dependent on ~ ~ ( 7 ) .  
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The transition process  generates an  associated set of transition moments 

These moments can be calculated directly f rom the product relation (eq. (68)) 

The transition moments are defined by ensemble averages only, since the transition pro­
cess is nonstationary. The relation between the ensemble averages and the associated 
t ime averages is discussed subsequently. 

The moments show the transition of the Press process  in a concise form. The sec­
ond and fourth moments are of pr imary  interest: 

E(.&.) = A2[b2 + pS2(7) (s12 - b2)] 

+ 6 pS2(7)  (si2 - b2) + pS4(7) (s14 - 6si2b2 + 

The moments show the transition through the autocorrelation function of the S process.  
The transition variance shows the development of the variance of the process  from its 
given initial value t o  i ts  final value which corresponds t o  the fully developed Press 
process  

The transition of the probabilistic s t ructure  i s  a lso shown by the corresponding flatness 
factor 
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The transition flatness factor is plotted in figure 2 as a function of the autocorrelation 
function of the S process.  The transition flatness factor var ies  f rom the value of 
three for  the initial Gaussian distribution to  the value of nine for the fully developed 
Press distribution. The development of the transition process  is strongly influenced by 
the transition of the variance of the S process,  f rom its given initial value to  the var i ­
ance of the fully developed process.  The transition of the Press process  is slower in 
t e rms  of ps for higher initial values of the S process.  

The development of transition moments can be extended to  the case of the general­
ized Press process.  The moments are developed f rom the corresponding transition pro­
cess, which is generated in the same  manner as the generalized process  itself. Accord­
ingly, the transition process  is the sum of mutually independent and identically distributed 
transition Press processes,  defined by a relation s imilar  t o  equation (B9). 

The transition moments of the generalized process  can be expressed in t e r m s  of the 
moments of the P r e s s  process  itself, which is a generalized process  of index n equal 
to  one-half 

(75) 

E(y&) = 2n + 6n(2n - 1)[.(z&I 

In a s imilar  manner the transition flatness factor of the generalized process  is related 
to  that of the Press process  

The transition flatness factors  for  the generalized processes  are plotted in figure 3 as a 
function of the autocorrelation function of the S process. The transition flatness factor 
var ies  f rom the value of three for  the initial Gaussian distribution t o  the value for  the 
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fully developed process  given by equation (B6). The transition factors also show the 
trend toward a Gaussian distribution as the index of the generalized process  is increased. 
Only the special case where the initial value i s  equal to  the standard deviation of the S 
process  is  considered; the additional effect of the transition of the variance (eqs. (75)) i s  
not shown. 

The transition properties of the Press process  can also be examined by means of 
the exceedance expression, which i s  a commonly measured quantity in atmospheric tu r ­
bulence applications. The quasi -steady approximation i s  used to  simplify the develop ­
ment. The exceedance expression for the transition process  is developed in the same 
manner as the expression for the fully developed process  (eq. (59)) 

The transition exceedance expression i s  the expected rate of exceedances of a specified 
level at  t ime t2 given the value of the S process  at an earlier t ime t l .  The proce­

(6 2)dure for the integration of equation (77) is s imilar  to that for  equations 

The notation follows that of equation (65). 

An example of the transition exceedance expression i s  shown in figure 4. The 
exceedance expression shows the development of the process  froin the initial Gaussian 
distribution through intermediate s ta tes  t o  the final exponential form of the fully developed 
Press process .  The expected ra te  of exceedances i s  strongly affected by the transition, 
particularly for  large values of the random process.  The transition exceedance expres ­
sion can have a predominantly exponential form when ps is still fai r ly  large. The 
example of figure 4 is the special case where the given initial value of the S process  is  
equal to  i ts  standard deviation. Thus, the example shows the transition of the probabilis­
tic s t ructure  but does not show the additional effect of the transition of the variance. 
Figure 5 i s  an example of the transition exceedance expression which shows the effects 
of the transition of both the probabilistic s t ructure  and the variance. In this case the 
development of the variance increases the transition effects upon the exceedance expres ­
sion, particularly for  large values of the random process.  

In the preceding development the statist ical  moments of the transition process  are 
defined by ensemble averages. Since the transition process  is nonstationary, the ensem ­
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ble averages are generally not equal t o  the t ime averages of a single record of the pro­
cess. For  a stationary and ergodic process,  the two types of averages can be equated 
with reasonable accuracy if the period of t ime measurement is sufficiently large. This 
relation can possibly be applied to the transition process  since that process is stationary 
on a local t ime scale. Thus, the ensemble averages of the transition process  can be 
replaced by t ime averages if the variation of the S process  is negligible both with 
respect to the development of the R process  and with respect to the required t ime mea­
surement period of the R process.  Both of these conditions are contained in the con­
cept of the quasi-steady process.  

The measurement of experimental data over a sufficiently long period of t ime i s  
influenced by the development of the S process.  The transition exceedance expression 
developed previously is essentially an instantaneous quantity, although the expression 
includes the full development of the R process.  The time-averaged exceedance expres­
sion is related to the instantaneous quantity defined previously, 

(N(xIs1)) = $1tl+T N [x(c)Is(t1)3 dc (79) 
t 1 

The time-averaged expression depends on the length of the measurement period. The 
calculation of the averaged exceedance function from the instantaneous function (eq. (79)) 
requires knowledge of the time dependence of the transition process,  which i s  completely 
determined by the autocorrelation function of the S process.  

Transition properties are generated by the evolution of a random process.  Transi­
tion properties are possessed by all random processes,  excluding the case of a totally 
static process.  Fo r  the usual random process  these properties represent the transition 
from a discrete distribution at a given initial value to the continuous distribution of the 
fully developed process.  In the Press process  the development occurs in two stages 
because of the different t ime scales of the two component processes.  The f i r s t  stage rep­
resents  the development of the R process  with negligible development of the S pro­
cess.  The second stage, which i s  considered in the previous discussion, represents  the 
development of the S process. During this stage, the probability density function devel­
ops between two continuous distributions rather  than the usual transition f rom a discrete 
to a continuous distribution. 

The Press process  has a formal simularity to the analytical model of evolutionary 
spectra  used for the analysis of nonstationary processes.  The concepts of evolutionary 
spectra  and oscillatory processes  have been developed by Priest ley (ref. 29). These 
concepts have been applied to the problem of aircraft response to  atmospheric turbulence 
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by Howell and Lin (ref. 30), and Verdon and Steiner (ref. 31). The relationship between 
the Press and the oscillatory processes  is discussed in appendix C. 

In summary, the properties of the Press process  answer several  questions regard­
ing the stationarity and the Gaussian character of measured atmospheric turbulence data. 
The answers  t o  these questions are contained in the concept of the product of two indepen­
dent random processes which evolve on radically different t ime scales. The transition 
properties of the Press process  generate a comprehensive model of the nonstationary 
aspects of atmospheric turbulence. The transition properties of the Press process  
account for both the Gaussian and the exponential forms of measured data and explicitly 
account for the transition between these two forms. 

APPLICATIONS TO ATMOSPHERIC TURBULENCE PROBLEMS 

The application of the Press and the generalized Press processes  t o  atmospheric 
turbulence problems i s  considered in this section. Two basic subjects are considered: 
f i r s t ,  the application of the processes  to measured turbulence data and second, the effect 
of the distribution of the S component process  upon calculated exceedances. A specific 
example of an airplane miss’ion analysis i s  developed. The relation between the distribu­
tion of the S process  and the ra te  of the exceedance of the extreme loads associated 
with the determination of s t ructural  strength is examined. 

Measured Atmospheric Turbulence Data 

The application of the Press process  t o  atmospheric turbulence measurements 
requires  the introduction of the concept of several  types of turbulence. This concept was 
introduced in the original development (ref. 1) and has extensive experimental justifica­
tion. The S component process  i s  replaced by a conditional process,  which is condi­
tional on the type of turbulence. The probability density function of the modified S pro­
cess is obtained by the consistency relation 

-i-

The parameters  Pi are the probabilities of occurrence of the ith type of turbulence and 
are generally referred to as the probability parameters.  Each of the conditional proba­
bility density functions (eq. (80)) has a separate  standard deviation, whose associated 
parameters  bi  are generally referred to  as the intensity parameters.  

Most developments consider two types of turbulence, that is, two t e rms  in the sum­
mation in equation (80). These are generally referred to  as nonstorm (i = 1)and s torm 
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(i = 2) turbulence, although the specific identification is questionable. There have been 
suggestions for  a third t e rm to represent extreme turbulence. There is an additional 
term,  omitted in the literature, which represents  the probability of no turbulence. This 
t e rm does not contribute to  any of the measured quantities except f o r  the zero values of 
the random process. However, this  t e r m  is necessary to insure that the total probabil­
ity is equal to  one. 

The modified Press process  is formed by the product of the Gaussian R process  
and the modified S process.  For the modified Press process  each conditional dis t r i ­
bution (eq. (80)) is Gaussian. The resulting S component process  is not Gaussian if 
there  is more than one type of turbulence, although it is usually identified as Gaussian 
in the aeronautical l i terature.  The probability density function and the exceedance 
expression for the modified Press process  are obtained from the relations for  the com­
ponent processes  and equations (3) and (59) 

The mean value of the random process  i s  included in the preceding expressions. The 
exceedance expression (eq. (82)) has been the basis of extensive experimental study of 
atmospheric turbulence, for  example, references 11 to 16. A review of the experimental 
determination of the associated atmospheric parameters  i s  given in reference 12. 

The procedure can be extended t o  the generalized Press process  by using the rela­
tions for the generalized process  development in appendix B. 

The Press process  has an inherent dependence property which affects different 
components both of a vector process  and of quantities formed from higher order  dis t r i ­
butions. This property i s  caused by different quantities being generated with a common 
S component process. The dependence property i s  not changed either by the specific 
form of the S process  o r  by the quasi-steady approximation. This  property introduces 
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some subtleties in the properties of the Press process  which are important in applications 
to atmospheric turbulence. Two examples are considered. 

The Press process  and i ts  first derivative are not independent. They are uncorre­
lated since the process  i s  stationary. However, the independence property is absent 
since the two quantities have the same S component process .  One consequence of this 
property i s  that the exceedance expression and the probability density have different func­
tional fo rms  (eqs. (81)and (82)). This is consistent with the development of the exceed­
ance expression from the joint probability density function of the process  and its first 
derivative (ref. 26). Consequently, it is necessary t o  consider the exceedance and the 
probability density functions separately since they cannot be obtained from each other. 
The two functions can be related in the limit of large values of the argument of the mod­
ified Bessel functions (ref. 22)as follows: 

I x  -xoI >> 1 
Ab 

Examination of some measured atmospheric turbulence data (ref.  32)which were analyzed 
by both types of functions shows a qualitative agreement with equations (84). 

Another example of the dependence property of the Press process  is the associated 
vector process.  In atmospheric turbulence applications the vector process  i s  assumed 
to  be formed by the product of a vector R process  and a scalar  S process,  that is, the 
vector-scalar form of the process.  The components of the Gaussian R process  are 
independent if they are uncorrelated, as i s  assumed for  isotropic turbulence. The com­
ponents of the resulting Press process  are also uncorrelated. However, they are not 
independent. This property does not affect the joint moments of second order  between 
different components of the turbulence, but it does affect the joint moments of higher 
order.  If the vector-vector form of the Press process  is used, then the components of 
the resulting process  can be independent. 

The exceedance rat io  and the probability distribution function have been used as 
measures  of the rate or  probability of failure of a system. For  linear systems these 
measures  can be related t o  a single intensity factor because of the specific functional 
fo rm of the exceedance rat io  (eqs. (82)and (83))and the probability distribution function 
(from eq. (81)). These are functions‘solely of the rat io  of the incremental response level 
and the standard deviation of the response R process  fo r  a given set of atmospheric 
parameters  
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Thus, this turbulence o r  gust intensity parameter  is directly related to a value of the 
probability of exceedance for a linear system. Also, the gust intensity parameter and 
the expected number of zero  crossings are directly related to  a value of the expected 
number of exceedances of a particular load level. It has been the basis of the develop­
ment of structural  strength cr i ter ia  fo r  a i rcraf t  response to  atmospheric turbulence 
(refs. 14 to  16). 

Effect of Intensity Distribution Upon Calculated Ekceedances 

The effects of the distribution of the intensity (S) component of the product process  
upon the calculated exceedances of a i rcraf t  response and loads are examined in this 
section. The cases of a Rayleigh and of one other distribution of the intensity process  
a r e  considered. The development i s  divided into two par ts .  F i r s t ,  methods of deter­
mining the atmospheric parameters  for  different intensity distributions a r e  developed. 
Second, the effects of the distribution of the intensity process  upon calculated exceedances 
a r e  examined. The exceedances are examined by both the mission analysis and the 
design envelope tech'niques (ref. 14) which are used to define the required 1imit.load level. 
The mission analysis technique i s  applied to the Boeing 720B for  which a complete set of 
mission data i s  available in reference 15. 

The generalized Press process  is used to consider different distributions for  the 
intensity process.  Two specific cases  are considered. The f i r s t  i s  a Rayleigh distribu­
tion, which is a generalized process  of index one. The Rayleigh distribution of the inten­
si ty  process  has been suggested by some examinations of atmospheric turbulence data 
(for example, refs. 11 and 33). The second is a higher order  distribution, of index four, 
which shows the effects of a more radical change in the distribution of the intensity pro­
cess.  Both cases  are compared with the Press process  which has a Gaussian distribu­
tion of intensity and which i s  a generalized process  of index one-half. Only the fully 
developed form of the random processes  is considered since the analysis is concerned 
with exceedances measured over a long period of time. The present section uses  the 
terminology of the aeronautical l i terature;  the S component i s  called the intensity pro­
cess, whose classification i s  based upon one type of turbulence only. 

The use of the generalized process  requires the determination of the parameters  of 
the intensity process  (the P's and b's) for different indices of the process.  Different sets 
of the parameters  are needed since different indices of the generalized process  have dif­
ferent exceedance expressions (eq. (83)). The historical approach i s  to  determine the 
parameters  so that the calculated exceedances match the measured exceedance data. A 
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slightly different approach is used in the present study. A method is.developed which 
modifies the available values of the parameters  which are defined for  the Press process.  
This approach is adequate to  determine the general  effects of the intensity distribution. 
This approach has  two advantages. First, it avoids a reexamination of the basic experi­
mental data. Second, it shows the effect of the intensity distribution on a comparative 
basis and avoids some open questions on the values of the original parameters  for  the 
Press process.  Thus, any revision of the original parameters ,  such as those suggested 
in references 12 and 34, will have a minor effect on the present comparison. 

The present  approach for  determination of the atmospheric parameters  is based 
upon the idea of matching measured exceedance data. However, the matching of exceed­
ance expressions does not imply the matching of other quantities as the index of the gen­
eralized process  i s  changed. One study (ref. 16) shows the impossibility of matching 
both the calculated exceedances and the variance for  different indices of the generalized 
process.  The present approach is based upon matching the exceedance expressions since 
these represent the basic experimental data used to determine the original parameters .  

The parameters  for  the generalized process  are determined by the following pro­
cedure. TheThe original parameters  of the Press process  are scaled by two factors. 
same factors are used for all altitudes. 
ences 14 and 15. The same  set of parameters  i s  used in a i rcraf t  strength cr i ter ia  

The original set of parameters  i s  that of refer-

(ref. 18 and (with minor revision) ref. 17). The scaling factors are determined by 
matching the two exceedance curves in the range of three t o  four t imes the standard devi­
ation of the original Press process.  A s  a check, the new parameters  are then used in a 
mission analysis of the Boeing 720B load factor (vertical acceleration of the center of 
gravity). The calculated exceedances are compared with those for  the Press process  to  
see whether they match in the range of 0.6g to 0.8g, which i s  the pr imary  range of the 
measured data (refs. 12  and 27). The procedure considers only the s torm (i = 2) te rms .  
The same factors are applied to the nonstorm (i  = 1)terms,  although these can usually be 
ignored at the limit load levels of interest. 

Thus, the calculated exceedances of the generalized process  must match those of 
the Press process  if the parameters  are properly defined. This does not say, however, 
that the two sets of calculated exceedances are identical. Differences can occur for  two 
basic reasons. F i r s t ,  differences can occur at different response levels such as those 
associated with l imit  load levels which may involve a n  extrapolation from the range of 
the measured data. Second, differences can occur for  quantities other than the load fac­
tor  which i s  the basis  of the measured data. 

One approach to  the development of s t ructural  cr i ter ia  i s  the mission analysis 
technique. This approach is based upon the exceedances in average aircraf t  usage. The 
aircraf t  usage is modeled by a set of representative flight segments. The total exceed-



ances are the sum of the exceedances calculated f o r  each segment, weighted by usage 
factors. A discussion of this technique is given in reference 14. 

The mission analysis technique is applied to  the Boeing 720B. A mission analysis 
of the 720B, using the Press process,  was par t  of the FAA study to develop the structural  
cri teria.  (See refs. 14 and 15.) The required response and mission data are given in 
reference 15. Three response quantities are examined. First, the load factor is exam­
ined pr imari ly  to check the adjustment of the atmospheric parameters.  The second quan­
tity is the cri t ical  load for the vertical  (symmetric) analysis, wing bending moment at 
wing eta station 0.33. The third quantity is the cri t ical  load for  the lateral analysis, 
vertical-tail bending moment at elastic axis station 158. For  the last quantity the yaw 
damper is assumed to be fully operative by following the procedure of reference 15. In 
the development of s t ructural  cr i ter ia  based on the mission analysis technique, an exceed­
ance level of 2.0 X exceedances p e r  average hour i s  often used to specify the required 
level of limit load (refs. 14 and 17). 

The f i r s t  case considered i s  a generalized process  of index one, which has a 
Rayleigh distribution of the intensity process.  The atmospheric parameters  are adjusted 
by the procedure indicated previously 

E[x2(t;n = 1)l = 0.935E[x2(t;n = 1/2)1 

The adjustment factors for the probability and intensity parameters  and the resulting fac­
tor  for the variance, using equations (B2), are indicated. The largest  change i s  in the 
probability parameter.  The changes in the intensity parameter  and in the variance of the 
total process  are smaller.  

The results of the mission analysis for  the generalized process  of index one are 
shown in figures 6 to 8. The resul ts  are the exceedances of load level p e r  hour of aver ­
age airplane usage plotted against the load level. The exceedances for the load factor 
(fig. 6)  show close agreement for  the two processes.  This agreement indicates that the 
atmospheric parameters  have been adjusted in a reasonable manner. The exceedances 
for the two loads (figs. 7 and 8) show essentially the same comparison with small  differ­
ences at limit load levels. In all th ree  cases  the Press process  gives a conservative 
specification of limit load; that is, it gives the highest values for limit load level. 

37 




The second case considered is a generalized process  of index four.  The adjustment 
factors and the resulting factor for the variance, using equations (B2), of the process  are 
as follows: 

bi(n = 4) = O.GObi(n = 1/2) 

E[x2(t;n = 4)l = 0.72E[x2(t;n = 1/2)1 

All the quantities are changed significantly. The largest  change is again in the probabil­
ity parameter.  

The resul ts  of the mission analysis for  the generalized process  of index four are 
shown in figures 6 to 8. The exceedances of the load factor (fig. 6) show reasonable 
agreement in the range of 0.6g t o  0.8g and indicate a reasonable determination of the 
atmospheric parameters .  However, significant differences occur at higher response 
levels. F o r  all three response quantities the differences at limit load levels are around 
10 percent. In all three  cases the Press process  gives a conservative specification of 
limit load. 

A second approach t o  the development of structural  c r i te r ia  is the design envelope 
technique. This c r i te r ia  i s  based upon a single flight condition. The c r i te r ia  is the 
intensity factor  (eq. (85)) which implicitly specifies an  associated exceedance ratio. Fig­
u r e  9 shows the value of the intensity factor as a function of altitude for  specific values 
of the exceedance ratio (eq. (83)) and for  the three generalized processes  under consider­
ation, This method follows the procedure of reference 14. F o r  reference, a value of 
1.2 x 10-6 i s  suggested for  the c r i te r ia  exceedance rat io  in reference 14. The values of 
figure 9 indicate the effects of the distribution of the intensity process  upon the intensity 
factor Ua. For  the generalized process  of index one, the differences f rom the Press 
process  are insignificant. For  the generalized process  of index four, the differences are 
small .  In both cases the Press process  gives a conservative specification of limit loads. 
It is  noted that there  is a modification of this approach that u ses  the exceedances ra ther  
than the exceedance ratio to specify limit load levels (ref. 16). The present conclusions 
also apply to  that approach since the only difference i s  the expected number of zero  
crossings of the R process  which is independent of the intensity process .  

The preceding discussion shows that the calculated exceedances are largely inde­
pendent of the distribution of the intensity process  unless data are available over a wide 
range of the response. Thus, it is generally difficult to  determine the distribution of the 
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intensity process  from measured exceedance data. A better approach i s  the use of the 
flatness factor, which i s  more  sensitive to  the distribution of the intensity process.  If 
the measured data represent only one type of turbulence, the flatness factor is  directly 
related t o  the index of the generalized process.  For  a fully developed process,  the flat­
ness factor has a simple form 

In summary, the effects of the distribution of the intensity process  upon calculated 
exceedances are examined by using the generalized process.  The exceedances are com­
pared with those of the Press process  which has a Gaussian intensity distribution. Sev­
eral conclusions are made. First, it is necessary to redefine the atmospheric param­
eters (P's and b's) as the intensity process  i s  changed. The parameters  can be defined 
so  that the calculated exceedances reasonably. match the measured data. Second, the use 
of different distributions for the intensity process  has a minor effect on the limit loads 
determined by the mission analysis technique. For  a Rayleigh intensity distribution the 
effect i s  negligible. Fo r  higher index distributions the differences may not be negligible. 
However, the Press process,  with a Gaussian intensity distribution, gives a conservative 
specification of limit' load levels. Finally, it  is generally difficult to  determine.the dis­
tribution of the intensity process  f rom measured exceedance data. A better method i s  
the examination of flatness factors to  determine the corresponding intensity distribution. 

CONCLUDING REMARKS 

The present report  i s  an examination of the random process,  termed the Press pro­
cess, which i s  used to model atmospheric turbulence in a i rcraf t  response problems. The 
pr imary conclusion of the present study i s  that the basic concepts of the Press process,  
which were originally developed largely on an intuitive basis, can be derived from an 
explicit mathematical model. The model is based upon the product of two independent 
random processes,  which have radically different t ime scales.  With this  model it is 
possible to  describe explicitly the general  properties of the Press process  such as the 
locally Gaussian condition, the Gaussian and non-Gaussian forms of experimental data, 
and the possible nonstationarity of experimental exceedance data. 

The concept of the product process  introduces two independent component processes.  
One component is the R process,  always specified as Gaussian, which defines the var i ­
ation of the product process  at constant intensity o r  standard deviation. The other com­
ponent i s  the S process  which has a slower variation. The first, second, and higher 
order  probability density and characterist ic functions are obtained for  the product process.  
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In developing these relations, both the usual Gaussian process  and a general class of pro­
cesses, related to  the Pearson type 111family, are considered fo r  the S component 
process.  

The concept of a product process  leads to  an  approximate procedure for  the analysis 
of the response of l inear dynamic systems t o  a class of non-Gaussian random processes.  
The procedure is based upon the concept that the t ime variation of the S component pro­
cess i s  much slower than that of both the R component process  and all significant 
aspects of the system dynamics. Under this quasi-steady assumption the sytem dynamics 
are influenced only by the R process,  which i s  Gaussian. The variation of the S com­
ponent process  does not affect the system dynamics, but does introduce the non-Gaussian 
nature of the random process  in a static manner. 

In the mathematical model the random process  develops in two stages since the 
process  is the product of two independent processes  which develop on radically different 
t ime scales. The second stage of development is of pr imary  interest, the development 
of the slower S component process  with the R component process  being fully devel­
oped. The mathematical model explicitly shows the transition from the Gaussian form of 
the R component process  to the non-Gaussian form of the fully developed Press process.  
This transition, which i s  nonstationary, i s  explicitly described by the transition properties 
of the stationary Press process.  

The effects of the form of the distribution of the S component process  upon cal­
culated exceedances are examined. The cases of a Rayleigh and of a second distribution 
are compared with the Gaussian case. It is concluded that the calculated exceedances are 
not greatly influenced by the distribution of the S component if the atmospheric param­
eters are properly defined. A specific numerical example of a mission analysis i s  com­
puted for  one airplane. The limit load levels determined by the cr i ter ia  specification are 
compared with those computed from the Press process,  with a Gaussian S component 
process.  The changes due to the Rayleigh distribution f o r  the S process  are negligible. 
The use of the second process  causes some differences at limit load levels. However, in 
the cases considered, comparison with the Press model shows that the differences are 
either negligible or that the Press model predicts somewhat higher occurrence of limit 
loads; that is, the Press model is conservative. 

The present  study outlines the analytical properties of the Press process.  Several 
applications of the formulation to  the measured properties of atmospheric turbulence and 
several  extensions of the analysis are suggested. 

Several properties of measured turbulence data which have not been examined on an 
explicit basis are identified. The pr imary  areas of interest  are the transition properties 
and the associated nonstationary process.  The Press model predicts explicit relations 
fo r  the transition properties of the exceedances, probability density function, moments, 
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flatness factor, etc. This prediction r a i se s  the basic question of the correspondence 
between the predicted propert ies  and the measured properties of atmospheric turbulence: 
does the analytical model adequately match the nonstationary properties of the measured 
data? An associated question is the specific fo rm of the t ime variation of the S com­
ponent process:  what are the power spectral  o r  covariance functions of the S process?  

The present  study suggests two problems of a mathematical nature. Firs t ,  the use 
of the transition propert ies  of a stationary product process  presents  a method for  the 
analysis of nonstationary random processes .  Some of the properties of the associated 
nonstationary process  are outlined in the present study. However, the relation between 
the present approach and other approaches t o  the analysis of nonstationary processes  
presents  an  interesting mathematical study. Second, the concepts of the product process  
and of the quasi-steady approximation present a method of analyzing the response of lin­
ear dynamic systems t o  a class  of non-Gaussian random processes.  The justification 
for  the approximation is discussed largely on a qualitative basis in the present study. 
This procedure should be thoroughly examined as a general  analytical method. 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, Va. 23665 

July 22, 1975 


41 




APPENDIX A 

DEVELOPMENT OF C PROCESS 

There are two random processes  associated with the S component of the Press 
process.  One is the C process,  which is associated with the historical development 
of the Press model. The other is the S process  itself, which i s  required for  a com­
plete mathematical formulation. The relations between these two processes  are devel­
oped in the present section. 

The difference between the two random processes  i s  the range of their  values: the 
C process  i s  res t r ic ted t o  positive values whereas the S process  has both positive and 
negative values. The values of the C process  are the moduli of the values of the S 
process  

The C process  appears when the Gaussian R component process  i s  related to 
a conditional process  by using equations (4)and (ll), 

The conditional process  i s  Gaussian with standard deviation equal to Ao which must be 
positive. Thus, the historical development, using the idea of a conditional process  
through the locally Gaussian condition, is based on the C process .  Also, the analysis 
of turbulence data in t e r m s  of i t s  standard deviation leads to  the C ra ther  than the S 
process .  

The properties of the C process  are determined from the specified properties of 
the S process  by equation (Al) .  The properties are obtained either f rom the probabil­
ity density function of the C process  o r  directly f rom the properties of the S process.  
For example, the moments of the C process  are the absolute moments of the S pro­
cess. The relations between the dynamic properties of the two processes  are more  com­
plicated. The quantity of pr imary  interest  is either the autocovariance or  the autocor­
relation function of the Z process  
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For the case of the Gaussian S component process, the relation between the autocorre­
lation functions i s  (ref. 19) 

The dynamic properties of the two processes  are determined from their  autocorre­
lation functions. The specific relations are obtained from equations (A4) either by eval­
uating the derivatives of the autocorrelation functions or  by expanding the functions in 
power se r i e s  in the t ime difference variable. These procedures give the following 
relations: 

Thus, the variances of the f i r s t  derivatives of the S and C process  are equal. How­
ever, the C process does not possess  a second derivative since the corresponding var ­
iance has an infinite value. This is the pr imary  reason the S process  must be used in 
the formulation of the P r e s s  process:  i t s  dynamic properties can be specified arbitrari ly.  
Thus, the quasi-steady approximation cannot be developed if the C process  is used, 
since the second derivative of that process  does not exist. However, once the quasi-
steady approximation is established, the 'Z process  can be used in place of the S pro­
cess since only the first order  properties are used. 

In the aeronautical l i terature the C process  is often re fer red  to  as the "intensity" 
of the turbulence. This interpretation is based upon the standard deviation of the condi­
tional process  (eq. (A2)) being equal to Ao. Strictly speaking, the t e rm is a misnomer 
since an  intensity is related t o  the variance and not the standard deviation of a random 
process.  However, the t e rm intensity is commonly used t o  identify the C process. The 
S process  is  a lso identified as the intensity, if it is remembered that the standard devia­
tion of the conditional process  depends on the modulus of the S process.  

In summary, both the S and C processes  are important aspects of the associated 
component of the Press process.  The S process,  with both positive and negative values, 
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must be used in the mathematical formulation. The C process,  res t r ic ted to  positive 
values, is required for the analysis of turbulence data. Also, the properties of the S 
process  cannot be completely determined from turbulence data through the associated 
conditional process  (eq. (A2)). The properties of the C process  can be developed from 
the specified properties of the S process  by using the transformation of equation (Al). 
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APPENDIX B 

DEVELOPMENT OF GENERALIZED PRESS PROCESS 

The generalized Press process  is formed by the product of the Gaussian R pro­
cess and the S process,  which is specified as a member of a family related to  the 
Pearson type 111family of processes.  The probability density functions of the S pro­
cess family are given in equation (22). The moments and both the probability density and 
characterist ic functions of the corresponding generalized processes  are developed in this  
appendix. The relation between generalized processes  of various indices is also 
developed. 

First Order Distributions 

The variance of the scalar S process  is determined from its probability density 
function (eq. (22)) 

= 2n b2(n) = 2nb2 

The parameter  b i s  not equal to the standard deviation of the S process  in the general  
case. Also, this parameter  can have different values fo r  different generalized processes,  
that is, for  different values of the index n, although the specific notation is dropped in 
the subsequent discussion. 

The moments of the scalar product process  are determined by the moments of the 
R and S component processes  and by the product relation (eq. (1)). (The generalized 
process  is denoted as the Y process  to distinguish it f rom the P r e s s  process  itself.) 
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The probability density and characterist ic functions of the scalar  generalized pro­
cess  follow from the explicit forms of the functions of the R and S processes  and 
from application of equations (3) and (6) 

1n­

-nCy@;") = (b2A 2 2  + 1)8 

The formulation can be extended to  vector processes  without difficulty. The s t ructure  of 
the vector -scalar process  is expressed most concisely by the characterist ic function, 
which has a functional form similar  t o  that of equation (19) 

The generalized P r e s s  process  has 
by the exponential-type dependence of the 
of the process.  Another indication is the 

l)-n 

a strongly non-Gaussian character,  as indicated 
probability density functions for  extreme values 
associated flatness factor 

The values of the flatness factor are la rger  than the value of th ree  fo r  a Gaussian process. 
However, the flatness factor does approach the Gaussian value of three in the limit of 
large values of the index n. 

The index of the generalized process appears only as a power coefficient in the 
characterist ic function (eq. (B5)). This property indicates a relation between the gener ­
alized processes of various indices, since the characterist ic function of a sum of inde­
pendent random variables is the product of the individual characterist ic functions. The 
characterist ic functions of the generalized process  (eq. (B4)) and the Press process  
(eq. (13)) have a simple functional relation 
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Thus, the sum of 2n independent and identically distributed Press processes  is a gen­
eralized process  of index equal to  n 

This relation presents an alternate method for  developing the properties of the gener­
alized process.  For example, the relations for  the moments (eqs. (Bl) and (B2)) can be 
developed by this  method. 

The development suggests a relationship to the central limit theorem. Interpreting 
the generalized process  of index n as the sum of 2n independent and identically dis­
tributed Press processes,  the central limit theorem requires that the generalized process 
becomes Gaussian in the limit of large n. The validity of this statement can be shown 
by examination of thq characterist ic function (eq. (B4)). This conclusion explains why 
the flatness factor (eq. (B6)) approaches the Gaussian value of three in the limit 'of 
large n. 

Second Order Distributions 

The development of second and higher order  distributions of the generalized Press 
process  requires specification of the higher order  distributions of the S process.  For 
the Press process,  the S process  i s  stationary and Gaussian; the higher order  dis t r i ­
butions a r e  specified directly. For  the generalized process  i t  is simpler to  use an alter­
nate approach. 

For the f i r s t  order  distributions, the generalized Press process  can be developed 
f rom the Press process  itself by equation (B8). This  relation is extended to  the case of 
random processes  considered at multiple t ime points 

The random process  Y is a generalized Press process  of index n if the Zj pro­
cesses are all Press processes  (generalized processes  of index one -half), which are 
independent and identically distributed. By using the relationship between the gener ­
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alized process  and the Press process  (eq. (B9)),the second order  characterist ic functions 
are developed 

This relation is similar  to equation (B7)for the first order  distribution. The second 
order  characterist ic function can be used to  develop relations f o r  the first derivative, the 
joint distribution of the process  and its first derivative, and the exceedance expression. 
Thus, the second and higher order  distributions for  the generalized processes  of various 
indices can be developed directly from the corresponding distributions of the P r e s s  
process.  



APPENDIX C 

COMPARISON OF THE PRODUCT AND OSCILLATORY RANDOM PROCESSES 

The relation between the definition of the product process  and that of the oscillatory 
process  developed by Priest ley (ref. 29) is examined in this appendix. It is shown that the 
spectral  expansions of two random processes  have a formal similarity. The discussion 
is restr ic ted t o  the spectral  expansions; the probabilistic s t ructures  of the random pro­
cesses are not considered. 

The t ime variation of a random process  is described by its spectral  expansion. The 
product random process  and i ts  two component processes  are stationary and are assumed 
t o  be mean square continuous. Accordingly, they can be expressed in a Fourier  or spec­
tral expansion (refs. 25 and 35) 

The process  { m ( w ) )  i s  the spectral  process  associated with the R process.  The spec­
tral process,  having orthogonal increments, is the basis of the definition of the spectral  
distribution and power spectral  density functions of the original process.  

Similar relations can be written for the S and Z processes.  By using the product 
relation, the power spectral  density functions of the three processes  can be related and 
will lead t o  equation (30). 

The Fourier  expansion of the product process  offers some insight into the t ime 
evolution of the process  and into the relationship with the concept of a nonstationary pro­
cess. By using the interpretation of the S process  as slowly varying in time, the spec­
tral expansion of the product process  is 

This relation follows directly f rom the product relation (eq. (23))and the Fourier expan­
sion of the R process  (eq. (Cl)). 
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APPENDIX C 

A similar  relation is written for  the Fourier  expansion of a nonstationary process  
by following the concepts of evolutionary spectra  and oscillatory processes  developed by 
Priest ley (ref. 29) 

eiot ao(t) dZ(w) 
-m 

This relation is the spectral  expansion of an  oscillatory process  in the special case of a 
uniformly modulated process.  The modulation function ao(t) is a slowly varying 
deterministic function. 

The spectral  expansions of the oscillatory process  (eq. (C4)) and the product pro­
cess (eq. (C3))have a strong formal similari ty.  In both cases a spectral  process is 
modulated by a t ime function which i s  considered to be slowly varying relative to the 
unmodulated process.  With the oscillatory process  the modulation function is a deter­
ministic function; the resulting oscillatory random process  is nonstationary. With the 
product process  the modulation. function is a random process;  the resulting product ran­
dom process  i s  stationary. The stationarity of the product process  i s  determined by the 
functional properties of the probability density and characterist ic functions and by the 
definition of stationarity. The nonstationary aspect of the product process  requires  an  
examination of the transition properties, which are considered in the main text. 
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